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Preamble: ecce turtur. ipse proficit tantum con 
collum foras.

I. INTRODUCTION

In the effort to improve the current prognosis 
in glioblastoma of one or two years’ survival after 
primary diagnosis even with the best of treatments, we 
have created a new adjuvant approach, termed CUSP9, 
presented here. As of early 2013, standard initial treatment 
consists of temozolomide and irradiation after maximal 
primary resection, typically referred to as the “Stupp 
Protocol” [1, 2]. There is no standard or agreed upon 
single best approach to recurrent glioblastoma after this 
initial treatment. A total of 22 clinical trials reported 
in 2012, all using various new, recurrent glioblastoma 
treatments that all had sound established activity in pre-
clinical study [1, 3 - 23]. Yet none reported more than 
minimal quality of life (QOL) or overall survival (OS) 
benefit. Many were stopped early for increased morbidity, 
drastically decreased QOL, or for meeting pre-established 
futility criteria. 

Dörner et al. recently reported that even after 
placement of carmustine (BCNU) wafers along the 
surgical cavity wall, the recurrence pattern remains largely 
local with meager meaningful advantages to patients in 
OS or QOL increases [24]. We present here a position 
paper from The International Initiative for Accelerated 
Improvement of Glioblastoma Care on a treatment plan 
aiming for more lasting tumor control while not adding to 
patients’ side effect burdens. Our treatment plan- termed 
CUSP9- aims to increase QOL and OS compared to 

current recurrent glioblastoma treatments by adding nine 
already-marketed growth factor-inhibiting drugs to low 
dose continuous temozolomide.

We review here the rationale for this nine drug mix 
using already-marketed drugs, as adjuvants to improve 
effectiveness and tolerability of low dose continuous 
temozolomide in treatment of glioblastoma at first post-
Stupp protocol recurrence. The total ten drugs of CUSP9 
are in three function categories: 

i] Established use in recurrent glioblastoma-
temozolomide, 

ii] Sound pre-clinical evidence supporting potential 
benefit based on documented inhibition of growth factors 
or a pathogenic driver- aprepitant, artesunate, auranofin, 
disulfiram with copper gluconate, nelfinavir, 

iii] Published reports of increased OS with use 
but of uncertain significance and drugs with less robust 
theoretical support- captopril, sertraline, ketoconazole 

As many growth enhancing systems have been 
identified in glioblastoma, and many currently-marketed 
drugs not traditionally thought of as cytotoxic have 
shown to have inhibitory activity at one or another of 
these systems, we searched the literature to find such 
drug- glioblastoma growth factor matches that would be 
unlikely to add to patient side effect burden based on our 
experience of long use of the respective drug in humans 
for non-cancer indications. Drugs were selected also on 
the basis of having little potential for seriously aversive 
effect or interaction with each other and, as an ensemble, 
had reasonable likelihood of concerted and coordinated 
activity against key biological features of glioblastoma 
growth. In the Conclusion section, we outline why CUSP9 

ABSTRACT:
To improve prognosis in recurrent glioblastoma we developed a treatment 

protocol based on a combination of drugs not traditionally thought of as cytotoxic 
chemotherapy agents but that have a robust history of being well-tolerated and are 
already marketed and used for other non-cancer indications. Focus was on adding 
drugs which met these criteria: a) were pharmacologically well characterized, b) had 
low likelihood of adding to patient side effect burden, c) had evidence for interfering 
with a recognized, well-characterized growth promoting element of glioblastoma, and 
d) were coordinated, as an ensemble had reasonable likelihood of concerted activity 
against key biological features of glioblastoma growth. We found nine drugs meeting 
these criteria and propose adding them to continuous low dose temozolomide, a 
currently accepted treatment for relapsed glioblastoma, in patients with recurrent 
disease after primary treatment with the Stupp Protocol. The nine adjuvant drug 
regimen, Coordinated Undermining of Survival Paths, CUSP9, then are aprepitant, 
artesunate, auranofin, captopril, copper gluconate, disulfiram, ketoconazole, 
nelfinavir, sertraline, to be added to continuous low dose temozolomide. We discuss 
each drug in turn and the specific rationale for use- how each drug is expected to 
retard glioblastoma growth and undermine glioblastoma’s compensatory mechanisms 
engaged during temozolomide treatment. The risks of pharmacological interactions 
and why we believe this drug mix will increase both quality of life and overall survival 
are reviewed.
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can be expected to improve QOL as well versus current 
simpler treatments. 

Pharmacologic risks of each drug individually 
and permutations of all possible combinations were 
carefully evaluated and presented in section IV. CUSP9 
PHARMACOLOGY. The only potential for harmful 
interaction that we can foresee is the potential interaction 
between artesunate and auranofin. We believe this risk 
can be managed by slow up titration of doses and frequent 
monitoring as described in section V. Partial CUSP’s, 
Risk Reduction, Risk Assessment. Otherwise the risks 
of these drugs used together was assessed to be low with 
the understanding that unexpected interactions may occur 
and this risk will require exceptional vigilance, as with 
any new treatment but particularly so in a regimen of this 
complexity. 

There is now broad recognition that multiple cross-
covering growth promoting signaling paths and cell death 
avoiding mechanisms are active in glioblastoma [25- 30]. 
As Siegelin et al. stated in referring to glioblastoma, 
“Drug discovery for complex and heterogeneous tumors 
now aims at dismantling global networks of disease 
maintenance” [29]. Or as formulated by Eyler et al. also 
referring to glioblastoma, these “networks of disease 
maintenance” require commensurate corresponding efforts 
directed to understanding “the exact nature by which many 
of the pathogenic drivers connect” [30]. On this basis we 
generate CUSP9. The conclusion of recognition of many 
global networks and multiple pathogenic drivers is the 
requirement for many pathogenic drivers’ inhibitors as 
CUSP9 provides. 

Multiple pathogenic drivers and interconnected 
growth promoting paths of glioblastoma maintenance 

are concepts reminiscent of a well-known problem in 
medicine, expressed as a metaphor-  “The Three Locks 
Problem”. A door with three locks will not open any better 
if one or two of the locks are unlocked. Likewise blocking 
one or two growth factors may not result in any slowing of 
glioblastoma growth due to alternate paths that take over 
for the blocked one[s]. How do we proceed if glioblastoma 
has twenty locks on it? In logic terms “if A then not B” 
does not imply “if not A then B” [if growth path “A” 
remains active then glioblastoma won’t be stopped (“not 
B”) does not imply that if growth path “A” is effectively 
inhibited then glioblastoma will be stopped (“B”)].

Table 1. lists the drugs of CUSP9 with basic area of 
projected modes of action.

II. RATIONALE:

II.1. Established use in recurrent glioblastoma-
temozolomide

Temozolomide is a 194 Da alkylating cytotoxic 
cancer chemotherapy drug. Current standard primary 
glioblastoma treatment, the Stupp Protocol, is, with minor 
variations, temozolomide and irradiation to tumor area 
after maximal resection that spares areas vital to good 
QOL [1, 2, 31, 32]. There is no generally accepted standard 
treatment for glioblastoma that has recurred after Stupp 
Protocol treatment. Our plan is to give temozolomide 
50 mg/m2  daily without pause (or until toxicity) at first 
recurrence after a completed Stupp Protocol. Multiple 
other first recurrence treatments have been reported but 
none have exceeded the QOL maintenance and a median 
OS of 30 to 41 weeks that this regimen provides [2, 33, 
34].

II.2. Sound pre-clinical evidence supporting 
potential benefit based on documented growth 
factor or a pathogenic driver’s inhibition- 
aprepitant, artesunate, auranofin, disulfiram, 
nelfinavir. 

II.2.1. aprepitant.

Aprepitant is a 534 Da oral neurokinin-1 receptor 
(NK-1R) antagonist approved for use in treating 
chemotherapy induced nausea and vomiting (CINV), an 
indication for which it is quite safe and effective [35, 36], 
even during highly emetogenic regimes [36-40]. Substance 
P is an eleven amino acid signaling neuropeptide that 
belongs to the tachykinin family of peptides. Substance P 
is the natural ligand of NK-1R that by binding to NK-1R, 
in addition to generating CINV, forms a regulatory link in 
many biological functions in cancer such as proliferation, 
angiogenesis, migration, and metastasis. 

Figure 1: Schema showing relationship between CCR5 
and neurokinin receptor (NK-1R) signaling operative 
in glioblastoma. Note three points: (a) NK-1R signaling can 
augment CCR5 signaling by converting less active plain CCR5 
to the more active serine phosphorylated CCR5, (b) NK-1R and 
CCR5 can cross-cover for each other, both independently can 
activating ERK1 ⁄ 2 and (c) expected synergy between aprepitant 
and maraviroc in blocking this aspect of glioblastoma growth 
promotion. Maraviroc is a newly approved blocking drug at the 
CCR5 cytokine receptor.
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Muñoz et al. [41, 42] have been documenting in a 
series of articles the growth enhancing aspects of NK-
1R signaling in several cancers over the last few years. 
They have been advocating trials of aprepitant in an anti-
cancer role in these cancers. Since many cancers [43, 44], 
including glioblastoma [45] use Substance P signaling 
at NK-1R as a growth stimulating element it was logical 
enough to suggest aprepitant as treatment adjunct [46, 47]. 
An added benefit of aprepitant is the rarity of any side 
effect at all when used as treatment for CINV [37].

Empirically, Substance P stimulates glioma cells’ 
proliferation [45]. NK-1R antagonists such as aprepitant, 
after binding to NK-1R, inhibit proliferation, have pro-
apoptotic effects, and exert anti-angiogenic and anti-
migration effects in pre-clinical models [42, 44, 48]. 

Aprepitant has central effects and good diffusion 
across the blood brain barrier (BBB). Moreover, it is 
eminently well tolerated [36, 37] even in a clinical trial 
as antidepressant using 300 mg/day. Side effects did not 
differentiate from placebo [49]. 

Considering the above data sets, plus the fact 
that glioma cells tend to overexpress NK-1R [50] and 
aprepitant shows a broad spectrum antitumor action, 
including in glioma models, it was natural to add 
aprepitant to CUSP9.
II.2.2. artesunate. 

Artesunate is a 384 Da orally available drug used 
in tablets alone or in fixed combinations with other 
drugs to treat malaria, particularly with drug-resistant 
Plasmodia strains, around the world and usually without 
a prescription [51]. Artesunate is one of several related 
semi-synthetic phytoderrived drugs, the artemisinin’s, 

based on Artemisia annua, an herb used in Chinesse 
traditional medicine. In aggregate, worldwide artesunate 
consumption is massive.

As part of a screening campaign of the National 
Cancer Institute, USA, artesunate and other related 
artemisinin-type compounds were shown to have 
cytotoxicity towards 60 cell lines derived from 8 different 
tumor types, including CNS tumors [52]. That artesunate 
induces apoptosis in cancer cells was first shown by 
Efferth et al. in a leukemia cell line [53]. 

That there was no correlation between IC50 
values of artesunate and mRNA expression of the 
multidrug resistance-conferring ABCB1 gene (coding 
for P-glycoprotein efflux pump) in the National Cancer 
Institute cancer cell lines and that artesunate is similarly 
active towards cell lines which over-expressing MDR1/
P-glycoprotein [54-56] indicate that artesunate isn’t a 
substrate for these chemotherapy defeating elements. 
Likewise, methotrexate-resistant cells with an amplified 
dihydrofolate reductase gene and hydroxyurea-resistant 
cells over-expressing ribonucleotide reductase were not 
cross-resistant to artesunate [56]. 

Particularly beneficial for glioblastoma treatment, 
the transfer of dihydroartemisinin, the first metabolite of 
artesunate, from plasma to lipid-rich brain structures is 
still increasing  at a time when post-dose blood levels of 
both artesunate and dihydroartemisinin are decreasing in 
humans with malaria treated with artesunate [57].

A rough correlation of baseline antioxidant mRNA 
gene expression in the National Cancer Institute cancer 
cell lines with the IC50 values for artesunate indicated a 
role of reactive oxygen species (ROS) stress in artesunate’s 
anti-cancer effect [58-60]. WEHI7.2 cells selected for 

Table 1: Summary of CUSP9, listing the drugs with a short unreferenced description of 
the rationale or expected advantage accruing from its use. References are given in the text. 
DRUG  EXPECTED BENEFIT
aprepitant Nausea reduction, inhibit growth by blocking NK-1R
artesunate Increase ROS, empirical anti-glioma effects, survivin inhibition

sertraline Empirical longer OS, improved mood, documented anti-proliferation effect in glioma cells

captopril Empirical longer OS, MMP-2 & MMP-9 inhibition, prevents AT-2 stimulation, lowers IL-18 
stimulated VEGF, TNF, & IL-8

auranofin Thioredoxin reductase inhibition, cathepsin B inhibition,  increased i.c. ROS, empirical [& 
potentially dangerous] synergy with artesunate,

nelfinavir HSP90 inhibition, MMP-2 & MMP-9 inhibition, decreased signaling at multiple receptors, i.a. 
TGF-beta, increased i.c. ROS, decreased AKT activation, lower VEGF, IL-8, ICE inhibition 

temozolomide A common & accepted treatment for recurrent glioblastoma

disulfiram
ALDH inhibition, glutathione inhibition, increase ROS, lowers IL-18 stimulated VEGF, TNF, 
& IL-8, MMP-2 & MMP-9 inhibition, proteosome inhibition, SOD inhibition, P-glycoprotein 
inactivation, MGMT inhibition.

Cu gluconate Adequate Cu may be a requirement for disulfiram activity

ketoconazole Drug efflux inhibitor at BBB, permits higher brain ritonavir (or nelfinavir) concentrations, 
5-lipoxygenase inhibitor, thromboxane synthase inhibitor, empirical anti-glioma effect
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resistance to hydrogen peroxide or transfected with 
thioredoxin (note strong thioredoxin reductase inhibition 
by another member of CUSP9, auranofin discussed below, 
see also Figs. 2. and 6.), manganese superoxide dismutase 
(that is inhibited by another CUSP9 member, disulfiram 
discussed below) or catalase were relatively artesunate-
resistant compared to parental cells [58]. 

As tumor cells commonly contain more iron 
than corresponding normal cells, the question arises as 
to whether iron may be critical for artemisinin group 
medicines’ action towards tumor cells. Cellular iron 
uptake and internalization are mediated in part by binding 
of transferrin-iron complexes to a transferrin receptor 
(CD71) on the cell surface membrane [61]. 

CD71 is highly expressed in tumors, including 
glioblastoma [62, 63]. CD71 expression was higher 
in a leukemia cell line and in U373 glioma tumor cells 
(48-95%) than in peripheral mononuclear blood cells of 
healthy donors (<2%) [64]. Iron and transferrin increased 
cytotoxicity of artesunate and artemisinin towards these 
cell lines [64].

Interestingly, exposure of artemisinin and its 
derivatives produced only marginal cytotoxicity to 
non-tumor cells [64, 65]. The growth of primary 
human fibroblasts was almost unaffected by artesunate 
concentrations up to 100 µM [64, 65]. The elegance of 
this approach of Efferth et al. is that it uses glioblastoma’s 
hunger for growth as reflected in CD71 overexpression, 
an erstwhile growth enhancing attribute, to help kill these 
cells.

Artesunate also induces DNA breakage in a 
dose-dependent manner as shown by single-cell gel 

electrophoresis and confocal microscopy of the DNA 
double-strand break indicator gamma-H2AX [53, 66]. 
This is probably the proximate mode of damage leading 
to artesunate mediated cell death.  

The epidermal growth factor receptor (EGFR, also 
known as HER-1) is an important target for cancer therapy 
and is particularly important specifically in glioblastoma 
pathophysiology [67-69].  Artesunate strongly enhanced 
erlotinib cytotoxicity to glioblastoma cells [70]. 
Artesunate enhanced cytotoxicity of doxorubicin in human 
acute T cell leukemia Jurkat cell line J16 and the human 
acute lymphoblastic leukemia cell lines CEM and Molt-
4 [71]. Exposure of glioma cells to artesunate enhanced 
irradiation induced induction of apoptosis, G2/M arrest 
and DNA damage [72] and had similar effects in a non-
small cell lung cancer cell line [73]. 
II.2.3. auranofin.

Auranofin is a 678 Da drug approved to treat 
rheumatoid arthritis [74, 75]. Three sets of data suggest its 
use in adjuvant treatment of glioblastoma. 

One of the probable mechanisms of action of 
auranofin in promoting cytotoxic drug cell death is given in 
Fig. 2. Anti-TNF-alpha-induced apoptosis protein (ATIA) 
is highly expressed in human glioblastoma [76]. ATIA 
knockdown in glioblastoma cells renders them sensitive 
to hypoxia-induced apoptosis. As shown in Fig. 2, ATIA 
up regulates thioredoxin reductase [76], a cytoprotective 
factor reducing intracellular ROS. As outlined below, it 
is precisely by inhibiting such cytoprotective thioredoxin 
reductase that we think auranofin exerts its primary 
anticancer effect. Strong thioredoxin reductase inhibition 

Figure 2: Schema showing several places where artesunate, auranofin, and disulfiram act to increase intracellular 
oxidative stress. induced apoptosis protein ; ROS = reactive oxygen species; TRX-2 = thioredoxin reductase; HIF-1 = hypoxia induced 
factor-1; ATIA = anti-TNF-alpha-induced apoptosis; PTP = mitochondrial outer membrane permeability transition pore.
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by auranofin is well-documented [77]. Mean circulating 
blood thioredoxin reductase levels were 31% higher in 
glioblaastoma patients compared to matched controls 
[78], indicating a significant pathophysiological role 
for thioredoxin reductase. Glioblastoma tissue levels of 
thioredoxin reductase were five times that of normal brain 
[78].

Shifting cancer cells’ redox bias towards oxidizing, 
away from reducing is an active area of cancer research. 
As a major force in limiting oxidizing conditions within 
cells, thioredoxin reductase therefore becomes an 
attractive target in cancer treatment generally. Auranofin 
and other thioredoxin reductase inhibitors are in active 
research programs as adjunct to current cancer treatment 
[79, 80]. How thioredoxin reductase inhibition by 
auranofin shifts intracellular redox towards an oxidizing 
state is diagrammed in Fig. 6. Increased intracellular ROS 
generated by auranofin has been shown empirically [81, 
82].

Multiple experimental thioredoxin reductase 
inhibitors other than auranofin are in various stages of 
development for cancer treatment after showing good 
pre-clinical activity [83, 84]. We intend to use the one we 
already have- auranofin.

As diagrammed in Fig. 6, NADP(H) is required for 
regeneration of reduced thioredoxin. Reduced thioredoxin 
is a major intracellular reducing agent. Glioma cell line 
proliferation remains unchanged as intracellular NADP(H) 
levels decrease until a level ~15% of normal is reached. 
At further decreases beyond that point proliferation and 
motility become progressively impaired and viability 
steeply declines as levels descend through <10% of 
normal [85]. 

We have empirical evidence of auranofin’s 
cytotoxicity in multiple cancer models [86], for example 
ovarian cancer [87], head & neck cancer [88] and others.

Cathepsin B is an important element of glioblastoma 

cell invasion along Scherer’s tracts [89, 90]. Two 
independent groups found that heavier cathepsin 
B immunohistochemical staining predicts shorter 
glioblastoma OS [91, 92]. Experimental reduction 
of cathepsin B inhibited glioblastoma growth and 
invasion in rodent glioblastoma models [93]. Auranofin 
inhibits cathepsin B and was previously suggested as a 
glioblastoma treatment adjunct on that basis [94].
II.2.4. disulfiram. 

Of all the ancillary drugs of CUSP9, disulfiram has 
the strongest evidence of potential benefit in glioblastoma. 
Disulfiram is a 297 Da oral aldehyde dehydrogenase 
(ALDH) inhibitor that results in accretion of acetaldehyde 
if ethanol is ingested. Such high levels of acetaldehyde 
are experienced as extremely unpleasant, hence alcohol 
consumption is discouraged, the current main clinical 
use of disulfiram. It has been in continuous use in the 
treatment of alcoholism since the 1940’s [95].

After ingestion disulfiram is rapidly metabolized to 
diethyldithiocarbamate after binding copper in the stomach 
[96]. Disulfiram metabolism is complex [96] and the 
ultimate metabolic species relevant to ALDH inhibition 
or disulfiram’s anti-cancer effects remain uncertain. In 
clinical use by far the most common observation is to see 
no side effects at all in those patients taking disulfiram 
250 mg p.o. once or twice a day to treat alcoholism. An 
estimated 10% will experience an easily tolerated metallic 
taste at times. 

Much of the seminal work on disulfiram’s anti-
cancer cell properties come from the lab of Weiguang 
Wang at the University of Wolverhampton [97-101]. 
Disulfiram’s multiple anticancer properties have 
been demonstrated in pre-clinical models of breast, 
prostate, myeloma, leukemia, lung cancers, cervical 
adenocarcinoma, melanoma, neuroblastoma and colorectal 
cancer [102-112]. 

Disulfiram exerts significant anticancer activity in 

Figure 3: Grid of potential foreseeable interactions of CUSP9 drugs. We recognize that unexpected interactions are not ruled 
out by this grid but the literature review behind this grid does make untoward reactions less likely. apr, aprepitant; sert, sertraline; cap, 
captorpil; Au, auranofin; NFV, nelfinavir; TMZ, temozolomide; DSF, disulfiram; cap, captopril; Cu, copper gluconate; ket, ketoconazole; 
art, artesunate; PK: potential pharmacokinetic interaction; PD: potential pharmacodynamic interaction

sert    -

cap    -    -
Au    -    -    -
NFV   PK    -    -    -
TMZ    -    -    -    -   PD
DSF    -    -    -    -    -    -
Cu    -    -    -    -    -    -    -

ket   PK    -    -    -   PD   PD    -    -

art  -  -  - PD PK  -  -   - PK

Drugs apr sert cap Au NFV TMZ DSF Cu ket
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multiple contexts [112-118]. Particularly the stem cell 
sub-population of glioblastoma are ALDH positive [97, 
98, 120-123], and susceptible to inhibition by disulfiram 
[97, 98, 100, 120-124]. We have increasing pre-clinical 
evidence that disulfiram, an old and inexpensive drug in 
continuous use for 6 decades in alcohol aversion therapy 
exerts significant anticancer activity [104, 112-118]. 

Disulfiram has previously been documented to 
potentiate the effect of several chemotherapy agents 
in vitro: cisplatin [128], gemcitabine [101, 129] 
temozolomide [130], paclitaxel [100], docetaxel [131], 
cyclophosphamide [132], 5-fluorouracil [101, 102], 
doxorubicin [99], sunitinib [104], and BCNU [133]. 
Currently, disulfiram is in Phase I clinical trials in 
metastatic melanoma, in hormone refractory cancers 
with lung and liver metastases (www. clinicaltrials.gov, 
identifiers NCT00256230 and NCT00742911) as well as 
in prostate cancer (identifier: NCT01118741).

Dufour et al. randomized 64 women with 
non-metastatic high risk breast cancer in a double 
blind placebo controlled phase 3 clinical trial of 
adjuvant diethyldithiocarbamate vs. placebo [134]. 
Diethyldithiocarbamate 10 mg/kg p.o. or placebo 
was given once weekly for 9 months after the first 
chemotherapy cycle. After 6 years, overall survival 
was 81% in the diethyldithiocarbamate group vs. 55% 
in placebo group, a significant difference. Current 
recommended dosing of disulfiram during alcoholism 
treatment is 250-500 mg per day, equivalent to 3500 mg 

of diethyldithiocarbamate weekly compared to the ~700 
mg of diethyldithiocarbamate weekly given in the Dufour 
et al. trial [134]. Even at 3000 mg p.o. per day disulfiram 
gave no serious adverse effects (135). 

A detail-poor case report appeared in 1977 of a 
woman experiencing gradual remission of breast cancer 
metastases to spine, skull, pelvis and ribs after intermittent 
exposure to disulfiram and interspersed drinking bouts 
(136). She died from a fall after ten years of such 
intermittent, alternating (and overlapping?) alcohol-
disulfiram exposure. Autopsy showed high blood alcohol 
level and microscopic nests of metastatic breast cancer in 
her bone marrow but no macroscopic disease [136]. 

A case report of a patient with metastatic ocular 
melanoma treated with disulfiram 250 mg/day p.o. and 
zinc gluconate 250mg/day p.o. showed decreasing tumor 
volume [110]. After 53 months of ongoing treatment with 
disulfiram (250 mg/d) and zinc gluconate (250 mg/d) this 
patient experienced no progression with no discernible 
drug side effects [110]. 

Suppression of breast cancer xenografts by 
disulfiram was shown in mice (137). Multiple in vitro 
models have recently demonstrated considerable anti-
glioblastoma effects via proteasome and ALDH inhibitions 
[97, 98, 111, 115, 122, 130,  138]. Suppression of breast 
cancer xenografts by 74% was shown in mice [137]. In 
prostate cancer xenografts 40% reduction in growth was 
seen [112, 117] indicating that combinatorial approaches 
will be needed [112, 118]. Following this conclusion 

Figure 4: Diagram of another aspect of disulfiram + ritonavir of potential benefit to glioblastoma treatment effectiveness. 
Caspase-1 is synonymous with ICE, interleukin-1 converting enzyme. The diagram lists ritonavir. It remains unproven if nelfinavir will 
function similarly, although every indication so far is that it will.
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Ketola et al. found several compounds could potentiate 
disulfiram in reducing prostate cancer xenograft viability 
[104]. The vascular endothelial growth factor (VEGF) 
receptor kinase inhibitor sunitinib for example was 
synergistic with disulfiram [104]. 

Disulfiram also inactivates P-glycoprotein [139], 
a major drug exporter from the brain, and therefore a 
problem for us in delivering chemotherapeutic drugs to 
glioblastoma.

Antitumor efficacy specifically of temozolomide 
can be directly increased by disulfiram partially through 
inhibition of the DNA repair protein O6-methylguanine-
DNA methyltransferase (MGMT) [130, 140]. MGMT 
is expressed at low levels in human brain. It normally 
functions to remove methyl groups from methylguanine 
that if left uncorrected would be read as adenosine (the 
normal G:C becomes an A:T) [141, 142]. MGMT transfers 
the temozolomide-generated methyl groups bound to O6-
position of guanine directly to an active site cysteine 
(Cys145) in MGMT in a 1:1 stoichiometric reaction [143], 
permanently destroying the MGMT molecule that is then 
degraded after each single methylguanine demethylation 
[144]. Consistent with this, OS patients with MGMT-
proficient tumors is somewhat shorter than those with 
lower expression of MGMT [145, 146]. 

Lesions that escape MGMT-mediated removal 
are targeted by mismatch repair (MMR). During 
DNA replication temozolomide-induced unrepaired 

methylguanine mispairs with thymine. MMR 
removes thymine from these methylG-T mispairs. 
As methylguanine is left unrepaired by MMR the 
methylguanine is again read as an adenosine and paired 
with thymidine. This becomes a futile repair cycle. This 
may result in single-strand DNA repair patches that block 
replication. In a subsequent round of replication, this 
eventually results in double-strand breaks that are potent 
activators of the apoptotic pathway [141, 142]. 

Inhibition of MGMT by O6-benzylguanine during 
temozolomide is undergoing clinical trials but frequent 
bone marrow toxicity is discouraging [147]. Due to its 
basic microenvironment MGMT’s Cys145 has a low 
pKa of 4.8 [148]. Srivenugopal and his colleagues have 
found that disulfiram can form adducts with this Cys 
145 at the active site of MGMT, thereby inactivating 
its methyltransferase function [144, 149]. Empirically 
disulfiram increases the cytotoxicity of  another aklylating 
agent occasionaly used in glioblastoma treatment, 
BCNU (Paranjpe). From the foregoing, it is clear that 
the electrophilic drug disulfiram, a major component in 
the CUSP9 protocol, is expected to have multifaceted 
biochemical effects, all working in synergy to improve 
glioma treatment. 

As highly reactive compounds, disulfiram and 
its first metabolite diethyldithiocarbamate react with 
many proteins in the cell, particularly by binding metals 
in enzymes’ active sites [113-120]. This has made the 

Figure 5: Schema indicating how HSP90, and hence its inhibition by nelfinavir (NFV) sit at several crossroads 
previously documented as crucial for glioblastoma growth. Note that CUSP9 is expected to inhibit the compensatory survival-
enhancing response to temozolomide by two paths. A) as indicated in this Figure via nelfinavir dampening of AKT function, and B] by the 
NFkB degradative actions of disulfiram. Maintainance of a good NFkB pool is one of the crucial elements in glioblastoma hardiness [314].
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determination of a primary mechanism of action in cancer 
treatment of disulfiram and its multiple metabolites 
difficult. Several non-exclusive mechanisms have 
been proposed based on demonstrated in vitro actions 
summarized below: 

• inhibition of DNA methyltransferase [112], 
• reduction of  NF-kB activation [100-102, 111, 

116, 133, 150], 
• reduction of DNA replication [118], 
• induction of oxidative stress [100, 117], 
• induction of mitochondrial membrane 

permeabilization, cell cycle arrest, reduction 
of angiogenesis, invasion of cancer stem cells 
[100], 

• proteosome inhibition [115-118, 137, 151], 
as inhibitor of superoxide dismutase with 
consequently increased intracellular reactive 
oxygen species [152], 

• MGMT repair function inhibition [133, 144, 
149]

• inhibition of interleukin-1 converting enzyme 
(ICE-1) as diagramed in Fig. 4 [153, 154].

• ALDH inhibition mediated decreases cancer 
stem cell function [121, 122, 126, 127, 130, 
155]

• P-glycoprotein inactivation [139]
Which of these paths is important in disulfiram’s 

clinical anti-cancer effect, which are primary and which 
secondary to some underlying primary effect, which are 

simple epiphenomena, are all unanswered questions. 
Recent dramatic data from the lab of H. Ishii in Osaka 
indicate that ALDH enzymatic function itself is important 
for stem cell resistance to cytotoxic chemotherapy [155]. 
ALDH therefore is not just a marker for stemness. It is a 
mediator of stemness and most importantly, a mediator we 
can block.

Concordant with the data of  H. Ishii’s group and 
particularly encouraging for our intended use in CUSP9, 
Schäfer et al. have recently identified ALDH 1A1 isoform 
as a major marker (and mediator of) glioblastoma 
resistance to temozolomide [123]. We have ample reason 
to include disulfiram. In many ways disulfiram would 
seem to be the ideal adjuvant addition to current cytotoxic 
chemotherapies of cancer, including glioblastoma.

Since some data on disulfiram as adjunct during 
cancer treatment has indicated a requirement for copper 
[97- 99, 101, 105, 116, 119, 122]. Copper gluconate is a 
434 Da salt, widely available without prescription as a 
dietary supplement that we add to CUSP9 on that basis. 
This might not be necessary in that it is thought that 
plain disulfiram rapidly chelates copper after ingestion 
[96]. The United States’ FDA has concluded that copper 
(cupric) gluconate is a category 1, Generally Regarded as 
Safe (GRAS) substance. In their words category 1 means 
that “There is no evidence in the available information 
on (substance) that demonstrates, or suggests reasonable 
grounds to suspect, a hazard to the public when they are 
used at levels that are now current or might reasonably be 
expected in the future.” [156].
II.2.5. nelfinavir. 

Nelfinavir is a 568 Da oral aspartic protease 
inhibitor in use for over ten years in the treatment of HIV. 
It is usually well tolerated, short term side effects are few. 
If gradual up titration is observed, loose stool without 
need for treatment was the only immediate side effect of 
note. In HIV-infected persons, years of treatment with HIV 
protease inhibitors may lead to metabolic disturbances, 
lipodystrophy, and insulin resistance [157]. 

HSP90 is a dimeric ATP-binding chaperone protein 
that binds to and thereby conformationally stabilizes 
many signaling receptors and crucial intracellular proteins 
[158]. Many signaling receptors shown to be important in 
glioblastoma growth are such HSP90 stabilized proteins 
or protein complexes. Some of these are diagramed in 
Fig. 5. There are many other client proteins of HSP90 that 
are of potential importantance in glioblastoma growth. 
Nelfinavir, like the older, related, 721 Da protease inhibitor 
ritonavir, binds to and prevents or limits the chaperone 
function of HSP90 [159-161] with multiple beneficial 
cancer chemotherapy consequences, some of which are 
outlined below. 

Wide interest in nelfinavir as an effective new anti-
cancer drug [162-165], in particular in the adjuvant role in 
combination treatment, isreflected by the implementation 

Figure 6: A. Schema showing auranofin shifting of intracellular 
redox towards an oxidizing state by diminishing regeneration of 
reduced thioredoxin. B. Schema showing related path by which 
thioredoxin reductase inhibition increases intracellular hydrogen 
peroxide (H2O2). Particular importance of NADPH regeneration 
from NADP+  in glioblastoma metabolism and growth is 
reviewed in ref. 313.
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of more than two dozen clinical studies with cancer 
patients as of the end of 2012 (www.clinicaltrials.
gov) that are currently ongoing, including two studies 
with glioma patients (NCT00915694: nelfinavir plus 
temozolomide plus radiation; NCT01020292: nelfinavir 
plus temozolomide). 

Increased endoplasmic reticulum (ER) stress [163, 
167] and HSP90 function interference [161] are major 
paths by which nelfinavir is thought to exert an anti-cancer 
effect. Loci of nelfinavir’s undermining of several core 
survival enhancing paths engaged by temozolomide can 
be seen diagrammed in Fig. 5.

Nelfinavir-mediated ER stress, probably caused by 
nelfinavir’s inhibition of a yet unidentified ER associated 
aspartic proteinase involved in protein processing, leads to 
a massive accumulation of misfolded proteins within the 
ER lumen, triggering the pro-apoptotic pathway of the ER 
stress signaling cascade [163, 167, 168]. In glioma cells, 
nelfinavir-mediated ER stress was shown to up regulate 
pro-apoptotic proteins and to induce cleavage of caspase 
4 in vitro and in a xenograft model [168].

Nelfinavir has not only been shown to be effective 
against a wide variety of different cancer cell lines at 
clinically relevant levels [169-171], but more importantly 
has also been shown to be similarly effective on ex vivo 
biopsy tissue from patients with primary and recurrent 
ovarian cancer [163]. This indicates a possible use of 
nelfinavir for relapsed cancer, independent of previously 
acquired chemoresistance. Particularly in myeloma cells 
can impaired proliferation and proteosome inhibition be 
seen after exposure to nelfinavir, with curiously enhanced 
inhibition to that provided by the marketed proteosome 
inhibitor bortezomib [171].

Experimental (not marketed) inhibitors other than 
nelfinavir or ritonavir e.g., derivatives of geldanamycin 
like 17-allylamino-17-demethoxygeldanamycin (17-
AAG), are in active research programs as adjuncts to 
traditional current cancer cytotoxic chemotherapy. Trials 
of these drugs are based on strong pre-clinical evidence 
that HSP90 inhibition undermines several compensatory 
survival enhancing responses to temozolomide in 
glioblastoma [172], in other cancers [173] and in gliomas 
to other cytotoxic chemotherapeutic drugs [174-176]. 

Specific studies on temozolomide action in glioma 
have shown HSP90 inhibition (again mostly but not 
uniquely using 17-AAG) as a strong sensitizing maneuver 
to glioma cells otherwise resistant to temozolomide [174, 
177] or irradiation [178]. Several novel [not marketed] 
HSP90 inhibitors have shown strong cytotoxicity against 
glioblastoma specifically against the stem cell sub-
population [175, 176, 179, 180]. Empirical inhibition 
is seen of proliferation of glioblastoma cell lines U251, 
A172, and U373 during exposure to nelfinavir alone but 
without significant apoptosis induction [181]. Increased 
vulnerability in nelfinavir-exposed cells to apoptosis 
induction by other agents was however demonstrated 

[181]. 
Matrix metalloproteinase-2 (72 kDa, MMP-2, also 

termed gelatinase A) and MMP-9 (94 kDa, also termed 
gelatinase B) are proteolytic collagenases strongly 
associated with glioblastoma growth and invasion [159, 
182, 183]. MMP-9 secretion is an HSP90 requiring 
event [184]. Note that three of CUSP9 drugs inhibit 
MMP-2, MMP-9- captopril, disulfiram, and nelfinavir, 
as referenced in the respective sections of this paper, and 
have previously been suggested as a mutually reinforcing 
trio of drugs well-suited as mutually reinforcing adjuvants 
in the treatment of glioblastoma [159]. 

Phosphatase and tensin homologue (PTEN) is a 
phosphatase that constitutively inhibits or functions to 
diminish AKT (protein kinase B, a serine/threonine kinase) 
signaling. PTEN is often malfunctioning in glioblastoma, 
resulting in AKT related constitutive overdrive. AKT is 
one of the many intracellular proteins requiring HSP90 
chaperoning for optimal functioning. Experimental HSP90 
inhibitors like 17-AAG [177] as well as nelfinavir and 
ritonavir inhibit AKT function [161, 185-190], partially 
reversing faulty PTEN function as commonly seen in, and 
forming one of the core growth enhancing abnormalities 
of, glioblastoma [191-193]. In 2006 Pore et al. showed 
decreased VEGF, hypoxia induced factor-1 (HIF-1), 
and AKT activation in U87 glioma cells and decreased 
angiogenesis into U87 seeded, subcutaneously placed 
Matrigel plugs in mice treated with oral nelfinavir [194, 
195]. 

We therefore expect some of the growth drive 
consequent to PTEN loss common in glioblastoma [193] 
resulting overactivation of AKT to be partially reversed 
by nelfinavir. 

Of the many proteins that use HSP90 for correct 
folding and function, one of the most important in 
glioblastoma pathophysiology is perhaps transforming 
growth factor-beta (TGF-beta) [196-199]. That TGF-beta 
sits at a crucial crossroads in glioblastoma’s dysregulation 
as recently reviewed by Eyler and Rich makes HSP90 a 
particularly attractive target [30]. This crossroads position 
of HSP90 in this regard is also indicated in Fig. 5.

Benefit was clear when nelfinavir was added to 
standard chemoradiation in a recent study of unresectable 
non-small cell lung cancer [200]. Of particular note was 
that this benefit was achieved using the dose we suggest 
for CUSP9, 1250 mg p.o. twice daily, and that this gave 
little evidence of added side effect burden to patients 
[200]. 

A remarkable research of Xie et al. showed that 
“nelfinavir is able to inhibit multiple members of the 
protein kinase-like superfamily” in addition to lowering 
AKT activation. Perhaps most interesting of all was their 
observation and their accompanying conceptual leap, that 
weak inhibition of multiple growth enhancing kinases as 
provided by nelfinavir can result in significant anti-cancer 
activity, not necessarily by itself but by setting up the 
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intracellular milieu to be less robust in coping with other 
insults like irradiation or traditional cytotoxic drugs [190], 
or in our case nelfinavir undermining survival paths that 
are engaged after exposure to temozolomide. 

We expect nelfinavir to be well tolerated. In HIV 
studies only about 4% of nelfinavir treated patients 
switched to other drugs due to side effects [201] and in 
a recently reported clinical study of nelfinavir as cancer 
treatment adjuvant nelfinavir added little morbidity [200]. 

For treatment of HIV-infected persons, nelfinavir is 
more and more being replaced by ritonavir-boosted HIV 
protease inhibitors of the newer generation. Some of these 
HIV protease inhibitors, including lopinavir, atazanavir 
[168], and even ritonavir as a single agent [185,189, 
202], have been shown to have similar anti-tumoral 
(but this does not imply identical) effects as nelfinavir. 
Since nelfinavir is the currently most  investigated HIV 
drug for cancer treatment, this treatment plan will focus 
on the incorporation of nelfinavir but remains open 
for the inclusion or replacement by other HIV protease 
inhibitors in case that preclinical or clinical data indicate 
a superiority of other marketed HIV protease inhibitors in 
glioblastoma treatment.

II.3. Published reports of increased OS with use 
but of uncertain significance and drugs with less 
robust theoretical support- captopril, sertraline, 
ketoconazole 

II.3.1. sertraline

Sertraline is a 306 Da selective serotonin re-uptake 
inhibitor (SSRI) in common use over the last twenty years 
in the treatment of depressed mood [203]. It is usually 
well-tolerated and is effective in about half of patients 
started on it [203, 204].

By formal study of glioblastoma patients, an 
18% rate of moderate to severe depression is seen post-
resection [205] but other studies would suggest that the 
actual rate of depression-related signs and symptoms was 
considerably higher and that these significantly degraded 
quality of life in glioblastoma patients [206]. Family 
member interviews indicate that glioblastoma patients 
experience greater depression signs than the patients 
themselves report [207].

A recent study of 1,364 glioma patients showed a 
non-significant longer survival [“suggestive trend towards 
a beneficial association”] in those treated post-diagnosis 
with tricyclic antidepressants [208]. Not only don’t we 
know if this data is a real effect or not (potential for 
propter hoc fallacy) but also we don’t know that, if it were 
a real association (longer survival if treated with a tricyclic 
antidepressant) would this carry over to the modern SSRI’s 
generally or sertraline specifically. However Caudill 
et al. at the Mayo Clinic reported also a non-significant 
longer survival in glioblastoma patients on an SSRI class 

antidepressant such as sertraline compared to those not on 
such...”Two-year survival in the cohort of patients taking 
an SSRI was 32% versus 17% in those who were not (P = 
0.18).” [ 209]. No excess toxicity was noted in the SSRI 
treated patients [ 209]. 

Additive anti-proliferative effect in U87 
glioblastoma cells was seen with temozolomide plus 
sertraline in vitro [210]. Down regulation of AKT with 
some reduced proliferation was seen in melanoma cells 
exposed to sertraline [211] but it was undetermined if this 
was related to serotonin reuptake inhibition or some other 
attribute of sertraline. So all above considerations taken 
together we consider the minimal risks of adding sertraline 
to be worth any gains that might accrue, were this data, 
particularly of slight increases in OS, to hold.
II.3.2. captopril

Angiotensin conversion enzyme inhibitors (ACEI) 
are a class of eminently well-tolerated drugs commonly 
used to treat hypertension, or congestive heart failure [212, 
213]. ACEI inhibit the proteolytic cleavage of angiotensin 
I to angiotensin II. A related class of drugs, sartans, binds 
to and prevents the stimulation of the angiotensin II 
receptor. 

In a study of 87 glioblastoma patients, those on 
ACEI or a sartan had lower need for dexamethasone [214]. 
This steroid-sparing use of ACEI alone holds potential to 
improve QOL, in that psychiatric [215, 216], metabolic 
[217], and immunosuppressive [218] morbidities 
secondary to dexamethasone use in glioblastoma are not 
trivial. The Carpentier et al. study’s finding of a non-
significant increase in OS in the ACE inhibited group was 
intriguing [ACEI use had “no effect on survival (16.2 vs. 
17.9 months for the treated and the non-treated group, 
respectively, P = 0.77)”] [214]. Data like this not meeting 
statistical significance, as with the non-significant increase 
in OS noted in Caudil et al.’s study of SSRIs, can both a) 
be a real, important, and ultimately statistically significant 
difference that becomes evident on further study with 
larger populations, and b) allow important insights into 
pathophysiology of a given disease if the difference 
proves to be statistically significant even if not clinically 
meaningful to patients in itself.

Captopril is a 217 Da oral ACEI, the first such to 
enter clinical use [219]. Since then many other ACEI’s 
have been approved yet captopril remains useful in treating 
hypertension and as remodeling inhibitor post-myocardial 
infarction [219]. Although hypotension is a theoretical 
risk, captopril has a history of safe use in uncomplicated 
hypertension. Orthostatic hypotension incidence remains 
low even in setting of captopril use in congestive failure 
and post-myocardial infarction [220].

In experimental systems, the antitumor effects of 
diverse ACE inhibitors and sartans show that as a class 
they inhibit cell proliferation and possess antiangiogenic, 
antimetastatic effects in multiple cancer models; 
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hepatocellular [221] , squamous cell [222], renal cell [222-
224], gliomas [225, 226], bladder [227], ovarian [228], 
prostate [229], breast [230], colon [231], gastric [232]. On 
this basis as well we feel the ACEI effect of Carpentier et 
al. will prove to be validated as a slight but statistically 
significant benefit when greater numbers are studied.

Human glioblastoma cells express 
immunohistochemistry demonstrable renin and 
angiotensinogen mRNAs and proteins, as well as renin 
and angiotensin 1 or 2 receptors  [233]. Fully 67% of 
human glioblastomas expressed angiotensin 1 receptors, 
53% expressed angiotensin 2 receptors [225].

Losartan, a sartan class pharmaceutical angiotensin 
II receptor blocker, reduced the growth of C6 glioma in rats 
[234]. Glioma cell line T98G constitutively synthesizes 
MMP-2 and MMP-9. This is inhibited by captopril with 
an expected consequent inhibition of Matrigel invasion 
inhibition [235]. As human glioblastoma tissue produces 
prodigious amounts of both MMP-2 and MMP-9, 
collagenases strongly associated with glioblastoma growth 
and invasion [159, 182, 183] captopril was previously 
mentioned as an obvious therapeutic intervention for 
glioblastoma [159].
II.3.3. ketoconazole. 

Ketoconazole is a 531 Da broad spectrum anti-
fungal drug, used in both topical and oral applications 
[236]. Several paths of importance in glioblastoma growth 
have good experimental documentation of inhibition by 
ketoconazole. To what extent ketoconazole congeners like 
miconazole or fluconazole share the discussed properties 
of ketoconazole is likewise unknown. Fluconazole 
penetration into brain tissue approaches 1:1 with blood 
levels but it might not possess the four attributes of 
ketoconazole outlined below.

Ketoconazole is a potent inhibitor of  a) 5- 
lipoxygenase [237- 239], b) thromboxane synthase [240- 
243], c) a drug efflux pump at the blood-brain barrier 
[244- 250], and d) has shown an empirical inhibition of 
cancer cell growth [238, 239]. 

In a study of long-term ketoconazole treatment of 
onychomycosis, 18% of people developed slight liver 
transaminase elevation, 3% developed transaminase 
elevations high enough to trigger stopping ketoconazole 
[251]. Reviews on the risks/benefits of ketoconazole 
and related anti-fungal drugs have concluded risks for 
ketoconazole use are low [252]. A total of about ten case 
studies have been published of fatal hepatitis during oral 
ketoconazole treatment [253].

In advanced prostate cancer patients on docetaxel 
given adjunctive ketoconazole at 200 mg p.o. three times 
daily this was well-tolerated, giving 1.24 microg/mL 
trough and 2.79 microg/mL peak plasma ketoconazole 
levels during steady-state [254].

a) Ketoconazole & 5-lipoxygenase:

Arachidonate 5-lipoxygenase 
(arachidonate:oxygen 5-oxidoreductase, EC 
1.13.11.34) is the rate-limiting enzyme in leukotriene 
synthesis. A proliferation enhancing role in glioblastoma 
for 5-lipoxygenase generated leukotrienes was first 
suggested in 1998 when inhibition of 5-lipoxygenase 
was shown to inhibit proliferation in U-373 glioma 
cell line [255]. dl-nordihydroguaiaretic acid (“Nordy”) 
is a phytoderived 5-lipoxygenase inhibitor active in 
inhibiting CD133+ related  clonogenicity of glioma 
cell lines [256]. Glioblastoma biopsy material studied 
by immunohistochemistry for 5-lipoxygenase shows 
heavy staining [257]. Two experimental 5-lipoxygenase 
inhibitors inhibited proliferation of the A172 glioma cell 
line [257], results confirmed and extended a year later 
by a different group [258]. A heavy granular staining 
for 5-lipoxygenase is seen in glioblastoma [and grade 
3 astrocytomas] not seen in the even staining of normal 
neurons and glia [259].

Much of the peritumoral edema seen during 
glioblastoma is generated by 5-lipoxygenase mediated 
leukotriene synthesis [260- 262]. Human glioblastomas 
are prodigious producers of leukotrienes [263] the 
consequence from which derives many of the decrements 
in QOL and increases in tumor growth vigor. Glioblastoma 
patients’ urinary leukotriene excretion decreases by 79% 
post-resection [263] indicating that it was the tumor itself 
that was generating excess leukotrienes. Exposure to 
experimental 5-lipoxygenase inhibitors inhibited in vitro 
glioma cell growth [264, 265]. Increased 5-lipoxygenase in 
glioblastoma was first noted in 2003 [266], then confirmed 
in a 2006 immunohistochemistry study showing staining 
for 5-lipoxygenase where heavier staining correlated with 
shorter OS [267]. The immunochemistry study of Ishii 
in 2009 again confirmed this and furthermore showed 
that experimental 5-lipoxygenase inhibitors inhibit 
proliferation of A172 glioblastoma cell line [257].  

 Already in 1989 increased leukotrienes in areas of 
glioblastoma peritumoral edema were documented [262]. 
On this basis we can expect diminished peritumoral 
edema with consequently increased QOL in ketoconazole 
treated glioblastoma patients as well as, if the data of Ishii 
et al. and the other indices of anti-glioblastoma effects 
mentioned hold, longer OS.
b) Ketoconazole & thromboxane synthase:

Robust thromboxane A2 content of, and synthetic 
ability by, human glioblastomas was shown as early 
as 1987 [268]. Thromboxane A2 receptors are widely 
expressed on normal tissues and on various cancers, 
including human glioblastoma cells [269- 271]. 
Thromboxane synthase catalyzes the formation of 
thromboxane A2 from prostaglandin H2. 

Already in 1998, unregulated gene expression 
with corresponding increase in mRNA for thromboxane 
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synthase was noted in glioblastoma cells selected in 
vitro for enhanced migration [272]. An experimental 
thromboxane synthase inhibitor [(furegrelate) inhibited 
glioblastoma cell line growth in vitro and growing in 
nude mice and most importantly sensitized these cells 
to he alikylating chemotherapy drug BCNU [273]. 
This confirmed and extended earlier work showing that 
thromboxane synthase inhibition diminished in vitro 
migration and sensitized glioblastoma cell lines to killing 
by irradiation [274].  

Following documentation of increased thromboxane 
synthase gene and protein expression in the sub-set of 
glioblastoma cells with a more migratory phenotype 
compared to the slower moving majority population 
[277] an in vitro study of exposure to the experimental 
thromboxane synthase inhibitor furegrelate resulted in 
caspase activation, DNA fragmentation, and apoptotic 
death [275].

Thromboxane synthase as a growth facilitating 
element also in many non-glioma cancers- and the 
beneficial potential benefit from its inhibition- is an 
active area of current research [276]. We intend to use the 
thromboxane synthase inhibitor we already have on the 
market- ketoconazole.
c) Ketoconazole as efflux pump inhibitor: 

Volume sensitive osmolyte efflux was blocked by 
ketoconazole [244].

P-glycoprotein efflux of docetaxel at blood 
brain barrier was inhibited by ketoconazole [245]. 
We have evidence for ketoconazole inhibiting BBB 
efflux of phenobarbital [246] and ritonavir [160, 248]. 
Ketoconazole inhibits the human breast cancer resistance 
protein (BCRP) [250], and P-glycoprotein efflux pump 
[247- 249]. Its occasional use in psychiatric practice is 
based on a) the salutary consequence of ketoconazole’s 
blunting high cortisol excursions [277] and b) increase in 
brain tissue of certain psychotropic medicines by virtue of 
its efflux pump inhibition [278].

IV. CUSP9 PHARMACOLOGY: 

IV.1. Introduction.

The introduction of a therapy with ten-drugs 
requires a special assessment of safety to limit the risk of 
adverse drug reactions. The greater the number of drugs, 
the closer should be the monitoring. We judge a minimum 
of twice weekly un-hurried meetings with gradual one-
by-one addition of drugs and slow up titration will be best 
for safety. Drug-drug interactions represent a common 
event and these should be prevented with an adequate 
protocol of dosing that requires an early assessment of 
potential interplays between the scheduled medicines. 
To assess potential interactions each drug of CUSP9 was 

combined to the others as shown in the grid of Fig. 3. Each 
pair of drugs was evaluated for the available evidence 
of interactions using as source of information the Risk 
Control Plans (RCP) of the reference medicinal product 
[279], and by a specific research using MEDLINE and 
Embase. 

IV.2. Pharmacokinetic interactions:

The literature review has provided the evidence that 
four potential pharmacokinetic interactions may occur for 
the group of drugs scheduled in the protocol: ketoconazole 
+ aprepitant, nelfinavir + aprepitant, artesunate + 
ketoconazole and artesunate + nelfinavir. 
IV.2.1. Ketoconazole + aprepitant and nelfinavir + 
aprepitant

CYP3A4 is the major enzyme involved in the 
metabolism of aprepitant [280]. Ketoconazole is well-
known as one of the most potent inhibitors known of 
CYP3A4. In vitro studies showed that ketoconazole may 
inhibit the 98% of aprepitant metabolism, with a marked 
increase in its bioavailability (5-fold increase of AUC, 
3-fold increase of half-life) [280, 281]. Nelfinavir inhibits 
CYP3A4 [282, 283]. No study has directly tested the 
effect of nelfinavir on aprepitant levels or metabolism. It 
is therefore difficult to quantify the pharmacokinetic result 
of this potential interaction. In terms of clinical relevance, 
if used in standard doses, the combination ketoconazole-
nelfinavir-aprepitant may result in very high levels of 
aprepitant. In the previously mentioned antidepressant 
article 300 mg. aprepitant per day (twice the dose 
suggested for CUSP9) gave no side effects different from 
placebo [36, 49]. 
IV.2.2. Ketoconazole + artesunate and nelfinavir + 
artesunate

As mentioned above, ketoconazole and nelfinavir 
are both potent inhibitors of CYP3A4. CYP3A4 is also 
involved in the metabolism of artesunate [284]. Nelfinavir 
and ketoconazole can be expected to increase artesunate 
levels. As a consequence, the possibility of artesunate 
dose-related adverse reactions is enhanced, among which 
the most relevant would be QT prolongation [285]. A QTc 
of  >o.42 will exclude artesunate from CUSP9.

IV.3. Pharmacodynamic interactions

The literature review did not provide direct evidence 
of specific pharmacodynamic interaction among the drugs 
included in the protocol. However, considering the main 
categories of adverse drug reaction for each drug, a 
potential hepatotoxic effect is expected for ketoconazole 
[286], nelfinavir [287] and temozolomide [288]. Patients 
exposed to the combination of these three drugs should 
be monitored by at least monthly assessments of liver 



Oncotarget14www.impactjournals.com/oncotarget

functions.
A further potential pharmacodynamic interaction 

would be that between auranofin and artesunate. The 
use of artesunate is contraindicated in patients receiving 
aurothioglucose since both drugs have been associated 
with the development of blood dyscrasias [289]. Although 
a specific contraindication with auranofin is not reported, 
we should expect risk for similar interaction with 
auranofin + artesunate, warranting frequent blood counts 
when these are given. 

IV.4. Felicitous drug-drug interactions:

IV.4. 1. Protection against artesunate cytotoxicity is 
afforded by intracellular ROS reducing agents [58- 60], 
important elements of which of which are inhibited by 
auranofin [81,82] and disulfiram [100, 117, 152].

IV.4. 2. Auranofin does double duty. First as 
thioredoxin reductase inhibitor [290, 291] then as 
cathepsin B inhibitor [79, 80, 84, 94]. 

IV.4. 3. Note that three CUSP9 drugs inhibit MMP-2 
& MMP-9- captopril, disulfiram, and nelfinavir [159, 292]

IV.4. 4.Two drugs of CUSP9 have inhibitory activity 
at relevant drug efflux pumps, disulfiram [108, 109, 139], 
and ketoconazole [245- 250].

IV.4. 5. Both disulfiram [98, 100, 121- 124] and 
nelfinavir and other HSP90 inhibitors [294- 296] have 
shown specificity in inhibiting cancer stem cell function. 

IV.4. 6. Both artesunate [297] and nelfinavir [194, 
195] lower both VEGF and HIF-1 activity.

IV.4. 7. Interference with AKT function has been 
noted after exposure to sertraline [211] and nelfinavir [55, 
65].

IV.4.8. Disulfiram and ritonavir acting together 
inhibit ICE-1, lowering IL-1 beta growth drive to 
glioblastomas [153, 154], also diagramed in Fig. 4.

V. RISK REDUCTION, RISK ASSESSMENT, 
AND PARTIAL CUSP’S.

V.1. Safety features built into CUSP9.

Underpinning the entire CUSP9 treatment process 
and a crucial component of CUSP9 are the safety features 
that must be in place for a new many-drug protocol like 
this. Sudden onset drug-drug interactions can usually be 
prevented by considering, as we have done, researching 
literature and history of drugs under consideration and 
their individual pharmacologic attributes. Specific safety 
requirements of CUSP9 are therefore:
V.1.1 Frequent meetings.

 Onset of drug-drug interactions is usually gradual. 
Early recognition of a negative interaction is enhanced by 

slow up titration. Unhurried careful weekly meetings are 
required for CUSP9 to function safely. We will have better 
chances to catch incipient unexpected interactions quickly 
this way.
V.1.2. Addition of one drug at a time. 

To minimize unforeseen drug-drug interactions with 
a complicated but necessary regime like CUSP9, a single 
drug only is added at each meeting. The next drug is added 
only when it has been established that that latest added 
drug has not generated a problem. The one exception to 
this rule will be copper gluconate that will be given with 
each disulfiram or not given if disulfiram is not tolerated.
V.1.3. Slow up titration.

 Drugs will be added at the low end of their dose 
range and slowly up titrated if meeting with the patient, 
and lab study if needed, establish that the last dose has 
been well tolerated.
V.1.4. Frequent lab monitoring. 

Weekly check of EKG, liver, kidney, and bone 
marrow function will be a minimum.
V.1.5.

 Patients will have a 24 hour phone contact with 
their monitoring physician and instructions to call if there 
is any deterioration in any domain. 
V.1.6. Exclusions.

A lengthy and detailed exclusion criteria list 
will help safety. Among many other exclusions, herbal 
preparations, nutritional supplements, or over-the-counter 
medicines or other ancillary medicines will not be allowed 
with 3 exceptions: 1) Hypertension controlled on any 
combination of ACEI or sartans will be permitted, in 
which case captopril is omitted from CUSP9, and 2) non-
insulin requiring diabetes well controlled on metformin 
will be allowed. The use of grapefruit juice or extracts will 
be discouraged because of its CYP3A4 inhibiting effect. 3) 
Hydromorphone will be allowed for pain control. 
V.1.7. Partial CUSP’s.

 If an untoward reaction or side effect is seen with 
the addition of a particular drug, that drug will be dropped 
from that patient’s treatment protocol and the addition 
process will continue as planned minus that drug, after 
restitution to the state of well-being established prior to 
addition of the offending drug. No further additions will 
be given if such restitution does not occur. 

V.2. Our safety assessment.

Using our clinical experience with these drugs 
combined with published data, to help others understand 
the safety structure better we have stratified the relative 
risk of the ten drugs as temozolomide >auranofin > 
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ketoconazole > nelfinavir >artesunate > sertraline > 
captopril > disulfiram > aprepitant > copper gluconate. 

For heuristic reasons and as options for patients 
and physicians who are timorous we offer a suggestion 
to consider partial CUSP’s in four risk category 
combinations.
V.2.1. Low risk combination:

Given at the low end of our target dosing range, 
aprepitant 80 mg twice daily, sertraline 50 mg twice daily, 
captopril 25 mg twice daily, disulfiram 250 mg twice daily, 
copper gluconate 2 mg twice daily.
V.2.2. Medium risk combination: 

artesunate or auranofin, nelfinavir, ketoconazole in 
addition to the low risk drug combination.
V.2.3. Higher risk combination:

temozolomide, combination auranofin and 
artesunate in addition to drugs of the low and medium 
group, the full CUSP9 given at our suggested target doses:

1....artesunate 50 mg p.o. twice daily
2....aprepitant 80 mg p.o. twice daily
3....sertraline 50 mg p.o. twice daily
4....captopril 50 mg p.o. twice daily
5....auranofin 3 mg p.o. twice daily
6....nelfinavir 1250 mg p.o. twice daily
7….temozolomide 25 mg/M2  p.o. twice daily 
8....disulfiram 250 mg p.o. twice daily
9....copper (cupric) gluconate 2 mg p.o. twice daily
10...ketoconazole 200 mg p.o. twice daily

VI. A CUSP9 SUMMARY:

The use of old drugs for new indications, coined 
“repurposing” is a realistic concept to accelerate therapy 
development for many cancers, previously formulated by 
many others [for example 25, 113, 120, 299, 300]. We 
herein add our voice and suggest a specific, coordinated 
old drug mix- CUSP9- as a multipronged coordinated 
attempt to augment current treatment of recurrent 
glioblastoma. In parallel with bacteriology practice we 
believe that a combination strategy such as CUSP9 is 
less likely to allow development of chemotherapeutic 
resistance as usually occurs in cancer treatment and 
specifically limits clinical efficacy of temozolomide in 
glioblastoma. 

We, The International Initiative for Accelerated 
Improvement of Glioblastoma Care, heartily invite 
suggestions, comments, or proposals for additions or 
deletions, or further improvement of the CUSP9 protocol, 
or its translational use in other cancer treatments. Indeed 
allowing wide debate, critical thinking, and feedback 
with intent to improve CUSP9 was a central motive 
for publishing this protocol. Comments to either of the 
corresponding authors will be sent to all co-authors for 
discussion and evaluation.

We are not the first (nor was Virchow when he 
discussed this in mid-1800’s) to suggest a connection 
between inflammation pathways and cancer, and to 
consider blocking these as a cancer treatment modality 
[301- 305]. The term “inflammation” is too imprecise 
to be useful in discussing the relationship between the 
malignant clone/cells and the rest of the body [301, 302]. 
CUSP9 aims to inhibit elements of inflammation that 
enhance glioblastoma growth.

There are many open questions. To what degree do 
nelfinavir and ritonavir share attributes? To what degree 
does ketoconazole increase CSF levels of nelfinavir as 
it does for ritonavir? Will BBB opening maneuvers be 
required for any of the CUSP9 drugs? Will any of the 
drugs work against any of the others in ways we don’t 
foresee? To what extent are associations with angiotensin 
inhibition and longer OS, or SSRI use and longer OS, 
simple propter hoc fallacies or real meaningful or causal 
elements?

Two of our CUSP9 drugs- disulfiram and ritonavir/
nelfinavir have a potential synergy in inhibiting a growth 
path used in glioblastoma that resembles closely an IL-
1beta converting enzyme (ICE-1, also termed caspase-1) 
and IL-18 mediated inflammation paths in some cases of 
acute pancreatitis [153], diagramed in Fig. 4. “Reducing 
IL-1beta and IL-18 production by inhibition of ICE-1 
is one promising strategy...” [303] in cancer treatment 
[294, 301- 303, 306] that was outlined already in 2001 
by Randle’s group in München. IL-18 and IL-1beta are 
both well documented growth facilitating elements in 
glioblastoma [306, 307].We take up this thread by using 
disulfiram and nelfinavir to do exactly that- ICE inhibition 
with disulfiram and nelfinavir to inhibit IL-1 and IL-
18 activation, details of which are pharmacologically 
explained in ref. 153 and depicted in Fig.4. We intend to 
thereby re-re-wire the pathogenically re-wired, amplifying 
feedback loop between HIF-1 and IL-1 common in cancers 
generally as described by Kaluz and Van Meir [307].

Aspects of our approach are similar to that being 
implimented in pediatric glioblastoma by J. Wolff et al. 
[308] at Tufts University where relapse post-primary 
treatment is selected in part by morphometric and 
immunohistochemical data that show which markers 
an individual tumor bears, then searching for already-
marketed drugs that may block that receptor system or 
marker. This can lead to use of non-cytotoxic drugs not 
traditionally thought of as cancer chemotherapeutic drugs- 
as in CUSP9. 

As referenced throughout our paper, CUSP9 is 
weighted towards interference with glioblastoma stem 
cell function, a particularly fruitful sub-population to 
target, offering higher reward yet having similar risks 
as targeting the tumor cell population as a whole [309, 
310]. Glioblastoma stem cells have a complex interaction 
with their surrounding brain parenchyma, stroma and 
extracellular matrix [311]. There is a bidirectional 
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relationship between these two compartements 
(surrounding brain and the glioblastoma cell) [311, 312] 
with which CUSP9 aims to block, as discussed throught 
this paper. 

Both that >99% of patients will experience 
progression post-primary treatment and the short median 
OS of patients with glioblastoma warrant taking the 
measured and manageable risks of CUSP9. The 22 reports 
of failed studies of new treatments using variations on 
traditional cancer therapeutic published in 2012 [1, 3-23] 
also justify our excursion into conceptually new treatment 
approaches as here in CUSP9. CUSP9 complexity and 
requirement for large clinician time commitment per 
treated patient may be unavoidable if we are to make a 
dent in this tough disease. 

So as in Preamble- ecce turtur. ipse proficit tantum 
con collum foras.
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